Abstract

D-A F8BT/g-C3N4 type II heterojunction nanocomposite was employed as photoelectrode material for photoelectrochemical (PEC) aptasensor based on rolling circle amplification (RCA) with the assistance of 3D-printed device for carcinoembryonic antigen (CEA) detection. D-A type F8BT improved photocurrent response of g-C3N4 nanosheet after forming D-A F8BT/g-C3N4 type II heterojunction which effectively constructed built-in electric field and reduced electron-hole recombination. With the introduction of DNA-AuNP probes by π-stacking interaction, the local plasmon resonance (LSPR) of AuNPs enhanced local electric field, promoted the generation of electron-hole and further improved photocurrent response. When target CEA was in presence of sensing platform, sandwich construction was formed between two kinds of CEA aptamers and CEA on magnetic beads, triggering the RCA reaction to produce repeated sequences. Partial sequences of complementary-DNA in combination with RCA results was digested by Exo III enzyme to release signal-DNA, detaching DNA-AuNP probes from the surface of the F8BT/g-C3N4 by complementation, causing the attenuation of LSPR and the decrease of photocurrent response. Combing with 3D-printed device, this PEC aptasensor exhibited a linear response to CEA from 0.02 ng mL−1 to 50 ng mL−1 with detection limit of 6.7 pg mL−1, contributing to develop all organic polymer semiconductors as photoelectric materials in PEC study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.