Abstract
Plasmonic filters have recently become a topic of significant interest because they are suitable for a wide range of applications. However, effective fabrication of plasmonic filters remains a challenge. In this paper, we demonstrate a simple method for fabricating plasmonic color filters based on nanotransfer printing (nTP) , using SiO2 as a hard mask for Al etching. nTP was performed on a 100 nm Al layer deposited on a glass wafer substrate with a 10 nm Al layer and a 20 nm SiO2 layer with a nanohole pattern. The 10 nm Al layer and 20 nm SiO2 layers were previously transferred from a polymer stamp prepared to create patterns of subwavelength-sized holes. The plasmonic filters were ultimately fabricated using the SiO2 layer as a hard mask to selectively etch the Al layer. The optical properties of the fabricated plasmonic filters were evaluated using experimental and simulation tools. In addition, we analyzed the results of nTP on the Al and SiO2 films by varying the temperature, pressure, and SiO2-film thickness. We believe that this technique is a promising method for fabricating nanostructures and for widening the scope of practical application of plasmonics because of its high efficiency and cost-effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.