Abstract
Low molecular weight thiols (biothiols) are highly active compounds extensively involved in human physiology. Their abnormal levels have been associated with multiple diseases. In recent years, major efforts have been devoted to developing new nanosensing methods for the low cost and fast quantification of this class of analytes in minimally pre-treated samples. Herein, we present a novel strategy for engineering a highly efficient surface-enhanced Raman scattering (SERS) spectroscopy platform for the dynamic sensing of biothiols. Colloidally stable silver nanoparticles clusters equipped with a specifically designed azobenzene derivative (AzoProbe) were generated as highly SERS active substrates. In the presence of small biothiols (e.g., glutathione, GSH), breakage of the AzoProbe diazo bond causes drastic spectral changes that can be quantitatively correlated with the biothiol content with a limit of detection of ca. 5 nM for GSH. An identical response was observed for other low molecular weight thiols, while larger macromolecules with free thiol groups (e.g., bovine serum albumin) do not produce distinguishable spectral alterations. This indicates the suitability of the SERS sensing platform for the selective quantification of small biothiols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.