Abstract

The light-induced property of photosystem I (PSI) has been utilized to convert solar energy to electrical energy in photoelectrochemical cells. Here we provide new results on the relationship between surface plasmon generation (SPG) efficiency of nanoslits and the experimentally obtained photocurrent by immobilizing PSI on the gold nanoslit electrode surfaces regarding different nanoslit widths. The photocurrent increases with the increment of SPG efficiency. This finding can be attributed to the phenomenon of plasmon-exciton coupling effect on the PSI in the nanoslits. The enhancement of photocurrent generation is discussed on the basis of plasmonic light trapping and plasmon-induced resonance energy transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.