Abstract
In this work, we report for the first time the entrapment of the biomolecular supercomplex Photosystem I (PSI) within a conductive polymer network of polyaniline via electrochemical copolymerization. Composite polymer-protein films were prepared on gold electrodes through potentiostatic electropolymerization from a single aqueous solution containing both aniline and PSI. This study demonstrates the controllable integration of large membrane proteins into rapidly prepared composite films, the entrapment of such proteins was observed through photoelectrochemical analysis. PSI's unique function as a highly efficient biomolecular photodiode generated a significant enhancement in photocurrent generation for the PSI-loaded polyaniline films, compared to pristine polyaniline films, and dropcast PSI films. A comprehensive study was then performed to separately evaluate film thickness and PSI concentration in the initial polymerization solution and their effects on the net photocurrent of this novel material. The best performing composite films were prepared with 0.1 μM PSI in the polymerization solution and deposited to a film thickness of 185 nm, resulting in an average photocurrent density of 5.7 μA cm(-2) with an efficiency of 0.005%. This photocurrent output represents an enhancement greater than 2-fold over bare polyaniline films and 200-fold over a traditional PSI multilayer film of comparable thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.