Abstract

The distance dependence of localized surface plasmon (LSP)-coupled Förster resonance energy transfer (FRET) between Si quantum dots (QDs) is experimentally and theoretically investigated utilizing core–shell nanostructures. The dependence of the energy transfer efficiency, rate, and characteristic distance, as well as the enhancement of the acceptor emission, on the shell thickness is examined. Compared to the structure without assistance of LSP from silver nanoparticles (Ag NPs), the FRET rate is enhanced by a factor of 15, and the Förster radius increases by 50% as a result of plasmon-coupling to the Si QDs and the FRET-assisted exciton transfer from the donors to the acceptors. The potential to tune the characteristic energy transfer distance has implications for applications in nanophotonic devices or sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.