Abstract
Gold and palladium nanoparticles are characterized by their localized surface plasmon resonance (LSPR). In contrast with the sharp LSPR spectrum of gold nanoparticles, palladium nanoparticles had a broad LSPR spectrum. Palladium-gold nanorattles (PdAuNRT) are an ideal system with optical properties that are a hybrid of gold and palladium nanoparticles. The PdAuNRTs consisted of small gold nanospheres (AuNSs) located inside hollow palladium nanospheres (PdHNSs) of larger sizes without touching each other. PdAuNRTs of various sizes were synthesized by systematic variation of the experimental parameters. Interestingly, for the PdAuNRTs, where PdHNSs and AuNSs are separated by a distance, it was found that the broad plasmon resonance band of the PdHNSs hybridizes with the sharp plasmon resonance of the AuNSs located in its center. This was further confirmed experimentally by optical absorption measurements and theoretically using discrete dipole approximation technique. The plasmon resonance hybridization resulted in broadening of the LSPR spectrum of the PdAuNRTs and the appearance of a dip due to a Fano resonance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.