Abstract

We calculate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of monolayer graphene and GaAs quantum well at zero temperature including layer-thickness and exchange-correlation effects. We use the generalized random-phase-approximation dielectric function and take into account the nonhomogeneity of the dielectric background of the system. We show that the effects of layer thickness, electron densities, and exchange-correlations are more pronounced for acoustic modes, while the optical branch depends remarkably on dielectric constants of the contacting media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.