Abstract
AbstractAn organic diode is demonstrated that near‐field energy transfers to molecules in solution via surface plasmon polaritons, in contrast to typical far‐field excitation via absorption of traveling photons. Electrically generated excitons couple to surface plasmon modes in the cathode; the plasmons subsequently excite chromophore molecules on top of the cathode. External quantum efficiency and time resolved photoluminescence measurements are used to characterize the diode and the near‐field energy transfer process. In addition, it is shown that excited chromophores can charge‐transfer to quencher molecules, illustrating the potential of this device to be used for photochemical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.