Abstract

Excitation of localized surface plasmon resonance in metal nanoparticles (NPs) embedded in a glassy matrix generates hot electrons, which can be extracted for different optoelectronic applications. The insights of plasmon relaxation dynamics with varying surrounding dielectric environments and temperature dependence electron-phonon scattering process in gold (Au) NPs are still not very clear. Here, we have employed ultrafast transient absorption (TA) spectroscopy to explore the hot plasmon mediated electron transfer (PMET) and electron-phonon dynamics of photo-excited Au NPs in glassy film matrix with variable SiO2 /TiO2 compositions at cryogenic (5 K) to room temperature (300 K). Herein, we have chosen two pump excitation wavelengths (400 and 700 nm). The 400 nm excitation (d→sp) generates hot electron and the 700 nm excitation (sp→sp) provide information of direct plasmon relaxation. Drastic reduction of the transient signal of Au NPs in the high TiO2 content film as compared to pure SiO2 confirm hot electron transfer (HET) from Au plasmon to TiO2 . Electron-phonon scattering time constant (τe-ph ) of Au NPs in the glassy film is found to be faster in presence of TiO2 due to facile electron transfer/injection. Temperature dependent TA studies suggest that electron-phonon scattering time decreases with temperature. These findings would assist to develop more advanced photo-voltaic, opto-electronic and quantum optic-based devices using the plasmonic metal NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.