Abstract

Two-dimensional honeycomb ferromagnets offer the unprecedented opportunity to study interactions between collective modes that in standard bulk ferromagnets do not cross paths. Indeed, they harbor an optical spin-wave branch, i.e. a spin wave which disperses weakly near the Brillouin zone center. When doped with free carriers, they also host the typical gapless plasmonic mode of 2D itinerant electron/hole systems. When the plasmon branch meets the optical spin-wave branch, energy and momentum matching occurs, paving the way for interactions between the charge and spin sector. In this Letter we present a microscopic theory of such plasmon-magnon interactions, which is based on a double random phase approximation. We comment on the possibility to unveil this physics in recently isolated 2D honeycomb magnets such as ${\rm Cr}_2{\rm Ge}_2{\rm Te}_6$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.