Abstract

Strong light–matter interaction in 2D materials at the few-exciton level is important for both fundamental studies and quantum optical applications. Characterized by a fast coherent energy exchange between photons and excitons, strongly coupled plasmon–exciton systems in 2D materials have been reported with large Rabi splitting. However, large Rabi splitting at the few-exciton level generally requires large optical fields in a highly confined mode volume, which are difficult to achieve for in-plane excitons in 2D materials. In this work, we present a study of a strongly coupled gold dimer antenna with a sub-10 nm gap on a monolayer tungsten disulphide ( W S 2 ), with an estimated number of excitons of 4.67 ± 0.99 . We demonstrate that varying the spatial mode overlap between the plasmonic field and the 2D material can result in up to a ∼ t e n f o l d increase in the number of excitons, a value that can be further actively tuned via plasmon-induced heating effects. The demonstrated results would represent a key step toward quantum optical applications operating at room temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.