Abstract

Photo-thermal catalysis is among the most effective alternative pathways used to perform chemical reactions under solar irradiation. The synergistic contributions of heat and light during photo-thermal catalytic processes can effectively improve reaction efficiency and alter design selectivity, even under operational instability. The present review focuses on the recent advances in photo-thermal-driven chemical reactions, basic physics behind the localized surface plasmon resonance (LSPR) formation and enhancement, pathways of charge carrier generation and transfer between plasmonic nanostructures and photo-thermal conversion, critical aspects influencing photo-thermal catalytic performance, tailored symmetry, and morphology engineering used to design efficient photo-thermal catalytic systems. By highlighting the multifield coupling benefits of plasmonic nanomaterials and semiconductor oxides, we summarized and discussed several recently developed photo-thermal catalysts and their catalytic performance in energy production (CO2 conversion and H2 dissociation), environmental protection (VOCs and dyes degradation), and organic compound synthesis (Olefins). Finally, the difficulties and future endeavors related to the design and engineering of photo-thermal catalysts were pointed out to draw the attention of researchers to this sustainable technology used for maximum solar energy utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call