Abstract

Electrochromism can be induced in electrochemically post-treated nanoparticles of wide band gap transparent conductors. We model this recently observed phenomenon by effective medium theory applied to nanoparticles of In2O3:Sn, which are represented as a free-electron plasma with tin ions screened according to the random phase approximation corrected for electron exchange. This semi-quantitative theory is used to derive approximate performance limits showing that high luminous transmittance (e.g., 60%) can be combined with efficient absorption of solar energy and concomitant low solar transmittance (∼34%), thereby documenting that plasmonic electrochromism is of interest for energy efficient fenestration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.