Abstract

Using ultrafast pump-probe reflectivity with a 3.1 eV pump and coherent white light probe (1.1-2.6 eV), we show that graphene on gold nanostructures exhibits a strong coupling to the plasmonic resonances of the ordered lattice hole array, thus injecting a high density of hot carriers in graphene through plasmons. The system being studied is single-layer graphene on an ultrathin film of gold with periodic arrangements of holes showing anomalous transmission. A comparison is made with gold film with and without hole array. By selectively probing transient carrier dynamics in the spectral regions corresponding to plasmonic resonances, we show efficient plasmon induced hot carrier generation in graphene. We also show that due to high electromagnetic field intensities at the edge of the submicron holes, fast decay time (10-100 fs), and short decay length (1 nm) of plasmons, a highly confined density of hot carriers (very close to the edge of the holes) is generated by Landau damping of plasmons within the holey gold film. A contribution to transient decay dynamics due to the diffusion of the initial nonuniform distribution of hot carriers away from the hole edges is observed. Our results are important for future applications of novel hot carrier device concepts where hot carriers with tunable energy can be generated in different graphene regions connected seamlessly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call