Abstract

Expanding the functionalities of plasmon-assisted lasers is essential for emergent applications in nanoscience and nanotechnology. Here, we report on a novel ability of plasmonic structures to induce dual-wavelength lasing in the near-infrared region in a Yb3+ solid-state laser. By means of the effects of disordered plasmonic networks deposited on the surface of a Yb3+-doped nonlinear RTP crystal, room-temperature dual-wavelength lasing, with a frequency difference between the lines in the THz range, is realized. The dual-wavelength laser is produced by the simultaneous activation of two lasing channels, namely, an electronic- and a phonon-terminated laser transition. The latter is enabled by the out-of-plane field components that are generated by the plasmonic structures, which excite specific Raman modes. Additionally, multiline radiation at three different wavelengths is demonstrated in the visible spectral region via two self-frequency conversion processes, which occur in the vicinities of the plasmonic structures. The results demonstrate the potential of plasmonic nanostructures for inducing drastic modifications in the operational mode of a solid-state laser and hold promise for applications in a variety of fields, including multiplexing, precise spectroscopies, and THz radiation generation via a simple and cost-effective procedure.

Highlights

  • During the last decade, the unique properties of surface plasmon resonances for manipulating light at subwavelength volumes have been exploited to produce various types of plasmon-based lasers[1,2,3]

  • The spectrum is obtained for the geometrical configuration that is relevant for lasing, namely, the incident beam propagates along the x optical axis of RTP and the emitted light is polarized parallel to the z-axis[22]

  • 0 1052 nm 1075 nm obtained for the geometrical configuration that is relevant for lasing experiments

Read more

Summary

Introduction

The unique properties of surface plasmon resonances for manipulating light at subwavelength volumes have been exploited to produce various types of plasmon-based lasers[1,2,3]. Roomtemperature near-infrared (NIR) lasing and, simultaneously, green and tunable blue radiation with subwavelength confinement, have been demonstrated in Nd3+:LiNbO3 crystal via various self-frequency-mixing processes at the metal-dielectric interfaces[15]. These results extend the inherent advantages of SSLs, such as their frequency stability, to subwavelength scales and pave the way for potential multifunctional operation of plasmon-assisted SSLs in applications that require multiplexing, which have yet to be explored at the nanoscale

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.