Abstract

The understanding and engineering of the plasmon-exciton coupling are necessary to control the innovative optoelectronic device platform. In this study, we investigated the intertwined mechanism of each plasmon-exciton couplings in monolayer molybdenum disulfide (MoS2) and plasmonic hybrid structure. The results of absorption, simulation, electrostatics, and emission spectra show that interaction between photoexcited carrier and exciton modes are successfully coupled by energy transfer and exciton recombination processes. Especially, neutral exciton, trion, and biexciton can be selectively enhanced by designing the plasmonic hybrid platform. All of these results imply that there is another degree of freedom to control the individual enhancement of each exciton mode in the development of nano optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call