Abstract

Manipulating the strong light-matter coupling interaction in optical microresonators that are naturally formed by semiconductor micro- or nanostructures is crucial for fabricating high-performance exciton-polariton devices. Such devices can function as coherent light sources having considerably lower emission threshold. In this study, an exciton-polariton light-emitting diode (LED), made of a single ZnO microwire (MW) and a p-GaN substrate, serving as the hole injector, was fabricated, and its working characteristics, in the near-ultraviolet region, were demonstrated. To further improve the quality of the single ZnO MW-based optical microresonator, Ag nanowires (AgNWs) with ultraviolet plasmonic response were deposited on the MW. Apart from the improvement of the electrical and optical properties of the hexagonal ZnO MW, the optically pumped whispering-gallery-mode lasing characteristics were significantly enhanced. Furthermore, a single ZnO MW not covered, and covered by AgNWs, was used to construct a heterojunction LED. Compared with single bare ZnO MW-based LED, significant enhancement of the device performance was achieved, including a significant enhancement in the light output and a small emission band blueshift. Specifically, the exciton-polariton emission was observably enhanced, and the corresponding Rabi splitting energy (∼ 495 meV) was significantly higher than that of the bare ZnO MW-based LED (∼ 370 meV). That ultraviolet plasmons of AgNWs enhanced the exciton-polariton coupling strength was further confirmed via angle-resolved electroluminescence measurements of the single MW-based polaritonic devices, which clearly illustrated the presence of Rabi splitting and subband anti-crossing characteristics. The experimental results provide new avenues to achieve extremely high coupling strengths, which can accelerate the advancements in electrically driven high-efficiency polaritonic coherent emitters and nonlinear devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call