Abstract
Light scattering from nanostructures is an essential ingredient in several optical technologies, and experimental verification of simulations of light scattering is important. In particular, solar cells may benefit from light-trapping due to scattering. However, light that is successfully trapped in an absorbing media such as e.g. Si necessarily escapes direct detection. We present in this paper a technique for direct measurement and analysis of light scattering from nanostructures on a surface, exemplified with aperiodic patterns of Ag strips placed on a GaAs substrate. By placing the structures on the flat face of a half-cylinder, the angular distribution of light scattered into the azimuth plane can be directly detected, including directions above the critical angle that would be captured if the substrate had the form of a slab. Modelling of the scattered light by summing up contributions from each strip agrees with the experimental results to a very detailed level, both for scattering backward and into the substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.