Abstract

AbstractOutbreaks of infectious viruses offer a formidable challenge to public healthcare systems and early detection of viruses is essential for preventing virus propagation. In this work, an ultrasensitive plasmon‐enhanced fluorescence resonance energy transfer (FRET) biosensor based on core‐shell upconversion nanoparticle (csUCNP) and gold nanoparticle (AuNP) for accurate detection of SARS‐CoV‐2 viral RNA is presented. In this biodetection assay, the Tm3+/Er3+ co‐doped csUCNP NaGdF4:Yb/Tm@NaYF4:Yb/Er acts as an energy donor and AuNP serves as an energy acceptor. The upconversion emission of Tm3+ and the design of the core‐shell structure led to a simultaneous surface plasmon effect of AuNP. The localized surface plasmon resonance (LSPR) arising from collective oscillations of free electrons significantly enhanced FRET efficiency between Er3+ and AuNP. The as‐prepared biosensor obtained a limit of detection (LOD) as low as 750 am, indicating that the integration of FRET and surface plasmon into one biodetection assay significantly boosted the sensitivity of the biosensor. In addition, samples extracted from clinical samples are also utilized to validate the effectiveness of the biosensor. Therefore, this innovative plasmon‐enhanced FRET biosensor based on Tm3+/Er3+ co‐doped csUCNP may pave the way for rapid and accurate biodetection applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.