Abstract

Avian malaria, caused by Plasmodium spp. and transmitted by mosquitos, is a leading cause of mortality of captive penguins. Antimalarial drugs are currently used to control infections in penguins. However, the effectiveness of treatment reduces significantly by the time the clinical signs appear, while early and unnecessary treatment interferes with development of protective immunity. Therefore, for suppressing parasitemia without affecting the development of immunity in captive penguins, antimalaria drugs need to be administered at the right time, which requires reliable diagnostic tools that can determine the levels of circulating antimalaria antibodies. In the present study, we have developed an enzyme-linked immunosorbent assay (ELISA) diagnostic assay based on the merozoite surface protein 1 (MSP-1) of P. relictum isolate SGS1 to specifically detect and relatively quantify antimalaria antibodies in penguins. We expressed and purified a truncated P. relictum isolate SGS1 MSP-1 and optimized its biotinylation and subsequent conjugation to streptavidin alkaline phosphatase for signal generation in ELISA. We tested the assay by analyzing sera obtained from penguins at the Baltimore Zoo, from Spring through Fall, and found that levels of detectable antibodies against MSP-1 varied seasonally for individual penguins, consistent with the expected seasonal variations in avian malaria prevalence. Corroboratively, we analyzed the sensitivity of the assay by titrating positive sera and found that the signal intensity generated was serum concentration-dependent, thus validating the ability of the assay to detect and relatively quantify the levels of antimalaria antibodies in penguin sera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.