Abstract

Plasmodium falciparum exports hundreds of virulence proteins within infected erythrocytes, a process that requires cleavage of a pentameric motif called Plasmodium export element or vacuolar transport signal by the endoplasmic reticulum (ER)-resident protease plasmepsin V. We identified plasmepsin V-binding proteins that form a unique interactome required for the translocation of effector cargo into the parasite ER. These interactions are functionally distinct from the Sec61-signal peptidase complex required for the translocation of proteins destined for the classical secretory pathway. This interactome does not involve the signal peptidase (SPC21) and consists of PfSec61, PfSPC25, plasmepsin V and PfSec62, which is an essential component of the post-translational ER translocon. Together, they form a distinct portal for the recognition and translocation of a large subset of Plasmodium export element effector proteins into the ER, thereby remodelling the infected erythrocyte that is required for parasite survival and pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.