Abstract

Prosthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, but a gold standard for PJI diagnosis is still lacking. Advanced glycation end products (AGEs) are proinflammatory molecules inducing intracellular oxidative stress (OS) after binding to their cell membrane receptors (RAGE). The aim of this study was to evaluate plasmatic soluble receptor for advanced glycation end products (sRAGE), as a new OS and infection marker correlating sRAGE to the level of OS and antioxidant defenses, in PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI. Plasmatic sRAGE levels (by ELISA assay), plasma antioxidant total defenses (by lag time method), plasma reactive oxygen species (ROS), and thiobarbituric acid reactive substance (TBARS) levels (by colorimetric assay) were evaluated in 11 PJI patients and in 30 matched controls. ROS and TBARS were significantly higher (p < 0.001) while plasma total antioxidant capacity and sRAGE were significantly lower (p < 0.01) in patients with PJI compared to controls. Our results confirm the OS in PJI and show a strong negative correlation between the level of sRAGE and oxidative status, suggesting the plasmatic sRAGE as a potential marker for improving PJI early diagnosis.

Highlights

  • The numbers of primary total hip and total knee arthroplasties have been increasing over the past decade

  • The aim of the present study was to evaluate the diagnostic value of plasmatic soluble receptor for advanced glycation end products (sRAGE), as new oxidative stress and infection marker, correlating it to the level of OS and antioxidant defenses, in postoperative prosthetic joint infection (PJI), in order to explore the possible application of this new biomarker in the early diagnosis of Prosthetic joint infection (PJI)

  • Advanced glycation end products (AGEs)-RAGE axis activated NADPH oxidase; on the other hand, it induces the formation of reactive oxygen species (ROS), which induce cellular damage acting as cellular toxicant

Read more

Summary

Introduction

The numbers of primary total hip and total knee arthroplasties have been increasing over the past decade. Prosthetic joints improve the quality of life, but they may fail, requiring revision surgery. Infection is the most serious complication, occurring in 0.8 to 1.9% of knee arthroplasties and 0.3 to 1.7% of hip arthroplasties. A wide number of tests are available for prosthetic-joint-associated infection (PIJ) diagnosis, ranging from haematological markers of infection and inflammation, intraoperative culture, and histology analysis. There is still a lack of gold standards for the diagnosis of PIJ [1, 2] because the clinical presentation of PJI is often ambiguous and classical inflammatory markers can be misleading [3, 4]. In order to optimize the diagnostic process, infection biomarkers with fast response and high sensitivity and specificity for infection are needed [5,6,7,8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call