Abstract

The mechanical properties of a fiber-reinforced plastic are influenced by the adhesion between a reinforced fiber and a matrix resin. In this work it is shown how to obtain strong adhesion between a carbon yarn and an epoxy resin through the formation of covalent bonds. Acid amide groups reactive with epoxy groups were introduced onto a surface of the yarn by means of plasma-graft polymerization of acrylamide. The density of active radicals formed on a surface of the yarn by the plasma irradiation was first increased with increasing discharge power and plasma irradiation time, and then the rates of the increase were largely decreased. The degree of grafting was linearly increased with increasing the surface density of active radicals. The yarn embedded in diglycidyl ether of bisphenol-A/triethylenetetramine mixture was pulled out to obtain pull-out force after curing. Pull-out force was increased with increasing degree of grafting and the failure in pulling out of the yarn was cohesive. The covalent bonds formed in the graft layer will result in an increment of pull-out force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.