Abstract

AbstractUltra-high molecular weight polyethylene (UHMWPE) is the principal material used to replace damaged cartilage in total joint replacement surgeries. This publication presents preliminary results from a new class of surface treatments to modify the surface chemistry and microstructure of UHMWPE under controlled processing conditions. Radio frequency plasmas were used to lightly crosslink the subsurface of UHMWPE and to modify the surface chemical state through the attachment of low-surface-energy fluorocarbon groups. A pin-on-disk apparatus was used to slide CoCrWNi pins with spherical tips on polished disks of plasma- treated and untreated UHMWPE immersed in a bath of preserved bovine serum. The wear resistance and surface chemical composition of tested specimens were characterized by surface profilometry and X-ray photoelectron spectroscopy (XPS), respectively. Changes in the surface hydrophobicity due to plasma treatment were evaluated using contact angle measurements. The prospect of surface plasma treatment in orthopedic applications is elucidated in the context of the obtained friction, wear, distilled water contact angle, and XPS results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.