Abstract
The work is devoted to an experimental study of the possibilities of applying a protective silicide coating on an alloy based on zirconium (E110) by atmospheric plasma spraying. Coatings based on the binary eutectic Mo5Si3 + MoSi2 were deposited on the surface of E110 alloy sheet. The features of the structure and phase composition of the coatings after deposition and their evolution as a result of isothermal annealing at a temperature of 1300°C are studied. Upon rapid cooling of silicide particles during coating, nonequilibrium phases are formed. As a result of annealing, the phase composition changes, which corresponds to the phase diagram. The kinetics of diffusion interaction between the coating and the base material has been studied. The possibility of successfully protecting a zirconium alloy from oxidation at 1100°C in air by complex deposition of a coating of molybdenum silicides has been shown for the first time. The minimum radius of curvature of the surface of the protected samples was about 1 mm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have