Abstract
Two important effects of MHD fluctuations in the RFP and tokamak are current generation (the dynamo effect) and mode locking. In the T1 and MST RFP experiments new results reveal the mode dynamics underlying these phenomena. In T1 the effect of specific magnetic Fourier modes on the current density profile is evident. In MST, the MHD dynamo term ( delta v* delta B) is measured in the plasma edge, and found to account for the time dependence of the edge current throughout a sawtooth cycle. As edge resistivity is increased in T1 the fluctuation amplitude increases to maintain the dynamo-driven current, as expected from MHD computation. The modes responsible for the dynamo often lock to the local magnetic field error at the vertical cut in MST. The plasma rotation velocity has been measured with a fast Doppler spectrometer to a time resolution of 1 mu s. The plasma rotation and mode phase velocity are remarkably well-correlated, with both slowing, in the presence of an impulsive field error, in a 100 mu s timescale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.