Abstract

The substitution of alternative gate dielectrics for thermally-grown SiO 2 and nitrided SiO 2 in aggressively scaled devices requires a significant processing change in going from thermally-grown to deposited dielectrics. This requires separate and independent steps for (i) the formation of Si-dielectric interface and (ii) the deposition of the dielectric thin film, which can be (a) Si nitride, or a Si oxynitride alloy, or (b) a high- k oxide. It is demonstrated that ultra-thin, nitrided Si–SiO 2 interface layers prepared by 300°C remote plasma processing can be effective in insulating device performance and reliability from deleterious effects associated direct deposition of alternative dielectric materials directly on to hydrogen-terminated Si surfaces. These interfaces perform equally well with Si nitride, Si oxynitride and high- k oxides, and contribute approximately 0.3–0.4 nm to the overall electrical oxide thickness (EOT), limiting aggressive scaling of EOT to approximately 0.6 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.