Abstract

Phospholipid transfer protein (PLTP) is a serum glycoprotein with a central role in high-density lipoprotein metabolism. We created a fusion protein in which enhanced green fluorescent protein (EGFP) was fused to the carboxyl-terminus of PLTP. Stably transfected HepG2 cells, which overexpress this fusion protein, were generated. PLTP-EGFP was translocated into the ER and fluoresced within the biosynthetic pathway, showing a marked concentration in the Golgi complex. The transfected cells secreted into the growth medium phospholipid transfer activity 7-fold higher than that of the mock-transfected controls. The medium of the PLTP-EGFP - expressing cells displayed EGFP fluorescence, demonstrating that both the PLTP and the EGFP moieties had attained a biologically active conformation. However, the specific activity of PLTP-EGFP in the medium was markedly reduced as compared with that of endogenous PLTP. This suggests that the EGFP attached to the carboxyl-terminal tail of PLTP interferes with the interaction of PLTP with its substrates or with the lipid transfer process itself. Fluorescently tagged PLTP is a useful tool for elucidating the intracellular functions of PLTP and the interaction of exogenously added PLTP with cells, and will provide a means of monitoring the distribution of exogenously added PLTP between serum lipoprotein subspecies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.