Abstract
Two-dimensional layers of bimetallic cobalt-platinum nanoparticles were prepared from colloidal suspension to serve as model systems for catalytic surface coatings with well-defined chemistry and geometry. After deposition, the particle surfaces were exposed to mild rf plasmas in order to remove the passivating shell of organic ligands that covered their surfaces after preparation. X-ray photoelectron spectroscopy subsequently carried out without exposing the samples to air revealed that all carbon species can be quantitatively removed due to the treatment and that selective oxidation/reduction of the particles is possible. Grazing-incidence small-angle x-ray scattering was used to study plasma-induced changes in the particle ordering with high precision. The measurements prove that even for closely packed layers with lateral distances of less than 2nm, changes in the mean diameters of the particles can be kept in the order of just 1%–2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.