Abstract
Polygonatum cyrtonema Hua and its processed products have demonstrated cardio-protective effects, though the underlying mechanisms remain unclear. In this study, plasma metabolic profiling and pattern recognition were employed to explore the cardio-protective mechanisms of both crude and processed P. cyrtonema in a myocardial ischemia model induced by ligation, using gas chromatography-mass spectrometry. Post-modeling, plasma levels of creatine kinase-MB, lactate dehydrogenase, troponin T, and malondialdehyde were significantly elevated but were notably reduced after treatment. Conversely, plasma levels of glutathione peroxidase and superoxide dismutase, which were significantly decreased post-modeling, were restored following treatment. Hematoxylin-eosin (HE) and Masson staining revealed that both crude and processed P. cyrtonema effectively reduced inflammatory infiltration and fibrosis in cardiac tissue. Metabolic profiling identified 34 differential endogenous metabolites in the treatment groups, with 19 confirmed using standard compounds. The linear correlation coefficients (R2) for these standards ranged from 0.9960 to 0.9996, indicating high accuracy. The method exhibited excellent precision and repeatability, with relative standard deviation (RSD) values below 8.57%. Recovery rates were between 95.02% and 105.15%, and the stability of the standard compounds was confirmed after three freeze–thaw cycles, with RSD values under 4.42%. Both crude and processed P. cyrtonema were found to alleviate myocardial ischemia symptoms by regulating branched-chain amino acid metabolism and energy metabolism. These findings provide a solid foundation for the potential clinical use of this herb and its processed products in treating heart disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have