Abstract
Lipopolysaccharide-binding protein (LBP) presents bacterial endotoxin, lipopolysaccharides, to cellular surface pattern receptors for immune responses in the gut-brain axis of Parkinson's disease (PD). We investigated whether plasma LBP levels were associated with PD severity and progression. This study included 397 participants (248 PD patients and 149 controls). We measured participants' plasma levels of LBP and pro-inflammatory cytokines, including TNF-α, IL-6, andIL-17A. PD patients underwent motor and cognition evaluations at baseline and at a mean follow-up interval of 4.7±2.3 years. We assessed the progression of motor and cognition symptoms based on changes in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III motor score and Mini-Mental State Examination (MMSE) score, respectively. Plasma LBP levels were lower in PD patients than controls (9.08±2.91 vs. 10.10±3.00μg/ml, p < 0.01). A multiple logistic regression model with adjustment for age, sex, and plasma cytokine levels revealed that reduced plasma LBP levels were associated with increased PD risk (odds ratio 0.816, [95% CI 0.717-0.929], p = 0.002). Among PD patients, LBP levels were correlated with MDS-UPDRS part III motor score after adjustment for confounders (coefficient = 0.636, p = 0.017), but not with MMSE score. Adjusted Cox regression analysis showed that higher plasma LBP levels associated with faster motor progression (adjusted hazard ratio 1.084 [95% CI 1.011-1.163], p = 0.024) during follow-up. Our results demonstrated that plasma LBP levels reflect risk, motor symptom severity and progression in patients with PD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have