Abstract
Rational design of high-efficient and low-cost catalysts as alternatives to Pt-based catalysts toward the oxygen reduction reaction (ORR) is extremely desirable but challenging. In this work, Fe@NCNT is firstly synthesized via the one-pot pyrolysis method, then Fe-NX active species are in-situ created on the prepared Fe@NCNT by a feasible “plasma inducing” strategy to synthesize the resulting catalyst (Fe@NCNT-P) for ORR. The morphology of Fe@NCNT-P is perfectly inherited by the derived carbon precursor, resulting in the core-shell structure of carbon-coated Fe and a mesoporous dominant nanostructure with a high specific surface area of 536 m2 g−1. The resultant Fe@NCNT-P catalyst exhibits remarkable ORR activity and durability, as well as outstanding performance in assembled zinc-air battery (ZAB) test with a peak power density of 240 mW cm−2. This work not only reports a novel and robust ORR catalyst, but also proposes a simple and effective strategy to improve the ORR electrocatalytic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.