Abstract

The rechargeable Zn-air battery (ZAB) is a promising device for energy storage. A good bifunctional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) plays a decisive role in the ZAB. Here, we prepare a Fe-Ni-Zn triple single-atom catalyst (SAC) anchored in the nitrogen-doped porous carbon framework (NC) denoted as SAC(Fe, Ni, Zn)/NC or A-SAC(Fe, Ni, Zn)/NC (ammonia-treated) for the ZAB study. We found that not only Fe-Nx, Ni-Nx, and Zn-Nx act as excellent catalytic sites for ORR and OER, but the synergetic effect by the three adjacent SAC(Fe, Ni, Zn) in the NC enhances the catalytic performance. As a result, the voltage difference (ΔE) of 0.75 V is achieved (half-wave potential of ORR: 0.88 V and the potential of OER at 10 mA cm−2: 1.63 V). In the rechargeable ZAB study, the battery with the A-SAC(Fe, Ni, Zn)/NC has a good specific capacity of 809 mAh/g @ 50 mA cm−2, the excellent power density of 300 mW cm−2 @ 406 mA cm−2 and superior cycle stability (2150 cycles, 358.3 h @ 10 mA cm−2) while the all-soild-state ZAB showed promising power density of 64.5 mW cm−2 and acceptable cycling durability over 25 h@1 mA cm−2. Triple SAC(Fe, Ni, Zn) in the hierarchical porous NC possesses the bifunctional catalytic capability, high ionic diffusivity, and electron conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call