Abstract

Ten mares were studied from February (winter anoestrus) to their second ovulation in the breeding season to investigate the relationship between resumption of ovarian cyclicity in the spring and circulating concentrations of FSH, inhibin A and inhibin isoforms containing pro- and -alphaC immunoreactivity. An additional four mares were studied during one oestrous cycle. Growth and regression of ovarian follicles were monitored by transrectal ultrasonography. The frequency of blood sampling varied from three times a week to once a day, depending on the follicular activity present. Concentrations of FSH, oestradiol, inhibin A and pro- and -alphaC isoforms were low during deep winter anoestrus when minimal follicular activity was present in the ovaries. During spring transition, an increase in FSH concentration preceded the emergence of each follicular wave. Concentrations of inhibins were significantly higher (P < 0.05) during growth of anovulatory follicles in spring transition than during winter anoestrus. Plasma concentrations of oestradiol and inhibin A were significantly higher (P < 0.001, P < 0.05, respectively) during the growth of preovulatory follicles than during the growth of transitional anovulatory follicles, but concentrations of inhibin pro-alphaC isoforms did not differ between the two types of follicle. During the oestrous cycle, there was a significant inverse relationship (P < 0.001) between concentrations of FSH and the inhibins. Plasma inhibin pro-alphaC isoforms, but not inhibin A, reached a peak on the day of ovulation. The results strongly indicate that FSH regulates growth of spring anovulatory and preovulatory follicles. Inhibins are likely to contribute to negative feedback on the release of FSH from the pituitary gland both during the transitional period and the breeding season in mares.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.