Abstract
Self-organizing block copolymer thin films hold promise as a photolithography enhancement material for the 22-nm microelectronics technology generation and beyond, primarily because of their ability to form highly uniform patterns at the relevant nanometer-scale dimensions. Importantly, the materials are chemically similar to photoresists and can be implemented in synergy with photolithography. Beyond the challenges of achieving sufficient control of self-assembled pattern defectivity and feature roughness, block copolymer-based patterning requires creation of robust processes for transferring the polymer patterns into underlying electronic materials. Here, we describe research efforts in hardening block copolymer resist patterns using inorganic materials and high aspect ratio plasma etch transfer of self-assembled patterns to silicon using fluorine-based etch chemistries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have