Abstract

The authors present a breakthrough multistage dry-etch process to create 100 nm half-pitch gratings in silicon with depths up to 6 μm. Interference lithography was used to pattern gratings in an optically matched stack of materials to form a 400-nm-thick silicon oxide hard-mask. The oxide was then used to mask the subsequent deep reactive-ion etching of silicon. In this article, the authors describe their grating patterning, pattern transfer, and deep etch processes, and present progress toward combining this technique with coarser scale lithography steps designed to form an integrated mechanical support structure to produce freestanding x-ray diffraction gratings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.