Abstract

Plasma doping (PLAD), a high-throughput ion implantation technique capable of achieving ultrashallow junctions and conformal doping of 3-D structures such as fin field-effect transistors, is investigated as an alternative to conventional beam-line ion implantation for InGaAs at advanced technology nodes. The PLAD at an elevated substrate temperature (ET-PLAD) is studied and reported for InGaAs for the first time. The ET-PLAD can give lower sheet resistance than room-temperature PLAD due to enhanced dopant incorporation. More crucially, an ET can help to prevent amorphization. After dopant activation anneal, residual corner defects are observed in small fins that are amorphized during plasma ion implantation, whereas fins that remain crystalline during plasma ion implantation are free of corner defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call