Abstract

This paper reports a novel additive manufacturing technique for MEMS devices using newly developed APSLD (atmospheric pressure sputtering layer deposition) technology. It uses a microplasma at atmospheric pressure to deposit microstructures with defined properties, such as conducting or isolating directly at different surfaces additively without complex and time‐consuming manufacturing routes like planar technology. Feasibility tests have been successfully done to deposit metal lines, isolating and metal oxide layers on 3D surfaces to manufacture high stable MEMS sensor system for harsh environments. This is a promising technology in the field of MEMS manufacturing, as it can simplify the manufacturing process and reduce the cost. The ability to deposit different materials can expand the design possibilities for MEMS devices. © 2024 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.