Abstract

Statement of problemDigital systems have recently found widespread application in the fabrication of dental restorations. For the clinical assessment of dental restorations fabricated digitally, it is necessary to evaluate their accuracy. However, studies of the accuracy of inlay restorations fabricated with additive manufacturing are lacking. PurposeThe purpose of this in vitro study was to evaluate and compare the accuracy of inlay restorations fabricated by using recently introduced additive manufacturing with the accuracy of subtractive methods. Material and methodsThe inlay (distal occlusal cavity) shape was fabricated using 3-dimensional image (reference data) software. Specimens were fabricated using 4 different methods (each n=10, total N=40), including 2 additive manufacturing methods, stereolithography apparatus and selective laser sintering; and 2 subtractive methods, wax and zirconia milling. Fabricated specimens were scanned using a dental scanner and then compared by overlapping reference data. The results were statistically analyzed using a 1-way analysis of variance (α=.05). Additionally, the surface morphology of 1 randomly (the first of each specimen) selected specimen from each group was evaluated using a digital microscope. ResultsThe results of the overlap analysis of the dental restorations indicated that the root mean square (RMS) deviation observed in the restorations fabricated using the additive manufacturing methods were significantly different from those fabricated using the subtractive methods (P<.05). However, no significant differences were found between restorations fabricated using stereolithography apparatus and selective laser sintering, the additive manufacturing methods (P=.466). Similarly, no significant differences were found between wax and zirconia, the subtractive methods (P=.986). The observed RMS values were 106 μm for stereolithography apparatus, 113 μm for selective laser sintering, 116 μm for wax, and 119 μm for zirconia. Microscopic evaluation of the surface revealed a fine linear gap between the layers of restorations fabricated using stereolithography apparatus and a grooved hole with inconsistent weak scratches when fabricated using selective laser sintering. In the wax and zirconia restorations, possible traces of milling bur passes were observed. ConclusionsThe results indicate that the accuracy of dental restorations fabricated using the additive manufacturing methods is higher than that of subtractive methods. Therefore, additive manufacturing methods are a viable alternative to subtractive methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call