Abstract

The purpose of the present study was to determine whether the training-induced hypervolaemic response seen in the horse is associated with aldosterone-mediated renal mechanisms affecting sodium conservation during the first days of training. Five healthy, Standardbred mares (weight 450-500 kg, age 4-8 years) that were unfit, but accustomed to running on the treadmill, were used to test the hypothesis that repeated submaximal exercise would alter plasma aldosterone (ALDO) concentration and renal excretion of electrolytes in horses within the first 3 days of training. The experiment consisted of a 2 week housing equilibration period followed by a 1 week control period and a 3 day exercise training period (30 min/day at 60% VO2max). During control, ALDO and renal fluid and electrolyte losses were measured for 24 h on 3 separate days. Renal function (urine volume [UV], 24 h excretion of Na+, K+ and Cl- [UNA+ V, UK+ V, UCl- V], clearance of Na+ [CNa+], K+ [CK+] and Cl- [CCl-], creatinine [CCr], osmotic substances [Cosm], and solute-free water [FWC], and the fractional excretion of Na+, K+ and Cl-) and ALDO were measured for an additional 3 consecutive days during the training period. There were no differences (P>0.05) in any variable during the control period. Plasma volume increased (+18.7%, P<0.05) after 3 days of training. During training, there were no significant changes in plasma osmolality, electrolyte concentrations or CCr. Training caused decreases (P<0.05) in UV (-30%), UNA+ V (-73%), UK+ V, (-55%) and UCl- V (-70%). Training also caused decreases (P<0.05) in Cosm (-30%), through decreases in CNa+ (-60%), CK+ (-60%), and CCl- (-66%). Interestingly, FWC increased (+30%, P<0.05), whereas, there were significant decreases in the fractional excretion of Na+ (-59%), K+ (-48%) and Cl- (-60%). Training caused substantial elevations in both pre-exercise (967%, P<0.05) and postexercise (+3013%, P<0.05) plasma ALDO concentrations suggesting an increase in both basal levels and the responsiveness to acute exercise. Together, these observations suggest that mechanisms affecting tubular conservation of electrolytes contribute to the early response to training. However, it is also concluded that renal mechanisms appear to be only part of the mechanism for conserving sodium and water intake as well as training-induced changes in gastrointestinal mechanisms affecting electrolyte and water balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.