Abstract

AbstractDue to advancements in industrialization, water pollution has become a major critical issue since it directly affects the quality of global water resources, human beings, organisms, plants, and animals. The main reason for the water pollution is unscientific management of industrial waste and population explosion. Water contamination and treatment technologies are two major topics of interest; water treatment technologies are also being developed in several ways. However, developing an economically feasible and highly efficient water treatment approach for all chemical water pollutants is ongoing. Photodegradation of this effluent is one of the best and simplest ways to convert or degrade contaminants or pollutants into a less harmful or non-toxic substance. Therefore, developing environmentally benign photocatalysts with remarkable stability and recyclability by a cost-effective and green method is becoming a prime requirement. Metal oxide nanomaterials are widely used as efficient photocatalysts due to their outstanding and unique optical properties. Metal oxides can be synthesized by various methods such as electrochemical, Sono-chemical, sol-gel, hydrothermal, polyol, and coprecipitation. However, the plant-mediated route is environmentally benign and straightforward. Hence, in this chapter, we have reviewed plant-mediated metal and metal oxide (M/MO) photocatalyst to dyes degradation. The chapter also focuses on the plausible mechanistic explanation of the photodegradation process. Lastly, we have explained the need for further developments to achieve a highly efficient and stable photocatalyst.KeywordsGreen methodPlant-mediated synthesisMetal oxidePhotocatalysisPhotodegradation

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call