Abstract
This paper investigates the optimal control solution using MPC for a typical offshore topside de-oiling process. By regarding the combination of the upstream three-phase gravity separator and the downstream de-oiling hydrocyclone set-up as one integrated plant, the plant-wide control problem is formulated and handled using MPC technology. The de-oiling dynamics of the hydrocyclone are estimated via system identification while the key dynamics of the considered gravity separator are modeled based on mass balance and experimental parameter estimation. The developed MPC solution is simulated and experimentally validated via a lab-scaled pilot plant. The comparison of performances of the MPC controlled system with those of a PID controlled system, which emulates the commonly deployed control solution in most current installations, shows the promising results in optimally balancing the gravity separator’s (level) control and hydrocyclone’s (PDR) control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.