Abstract

Nanoparticles have unique capabilities and considerable promise for many different biological uses. One capability is delivering bioactive cargos to specific cells, tissues, or organisms. Depending on the task, there are multiple variables to consider including nanoparticle selection, targeting strategies, and incorporating cargo so it can be delivered in a biologically active form. One nanoparticle option, genetically controlled plant viral nanoparticles (PVNPs), is highly uniform within a given virus but quite variable between viruses with a broad range of useful properties. PVNPs are flexible and versatile tools for incorporating and delivering a wide range of small or large molecule cargos. Furthermore, PVNPs can be modified to create nanostructures that can solve problems in medical, environmental, and basic research. This review discusses the currently available techniques for delivering bioactive cargos with PVNPs and potential cargos that can be delivered with these strategies. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call