Abstract

Reasonable hollow structure design and oxygen vacancy defects control play an important role in the optimization of electrochemical energy storage and electrocatalytic properties. Herein, a plant polyphenol tannic acid was used to etch Co-based zeolitic imidazolate framework (ZIF-67) followed by calcination to prepare a porous Co3O4@Co/NC hollow nanoparticles (Co3O4@Co/NC-HN) with rich oxygen vacancy defects. Owing to the metal-phenolic networks (MPNs), rich oxygen vacancy defects and the synergistic effect between Co3O4 and Co/NC, the box-like Co3O4@Co/NC-HN nanomaterials with large specific surface areas exhibit excellent supercapacitor performance and electrocatalytic activity. As expected, Co3O4@Co/NC-HN shows high specific capacity (273.9 mAh g−1 at 1 A g−1) and remarkable rate performance. Moreover, the assembled Hybrid supercapacitor (HSC, Co3O4@Co/NC-HN//Active carbon) device obtained a maximum energy density of 57.8 Wh kg−1 (800 W kg−1) and exhibited superior cycle stability of 92.6% after 4000 cycles. Notably, as an electrocatalyst, the nanocomposites exhibit small overpotential and Tafel slope. These results strongly demonstrate that both unique hollow structure and abundant oxygen vacancies designed from plant polyphenols provide superiorities for the synthesis of efficient and green multifunctional electrode materials for energy storage and conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.