Abstract

BackgroundPlant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses.ResultsWe have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1.ConclusionsThe plant lighting system, with a computer with a graphical user interface program, can control the PFD and mixing ratios of five wavelength-band lights. A highly uniform PFD distribution was achieved, although an intentionally distorted PFD gradient was also created. Phototropic responses of oat coleoptiles to the blue light gradient demonstrated the merit of fine controllability of this plant lighting system.

Highlights

  • Plant growth and development depend on the availability of light

  • Close proximity irradiation [8] is possible using visible-spectrum light-emitting diode (LED) that do not emit collateral infrared radiation, which would result in potentially undesirable increase in plant temperature

  • The average photosynthetic PFD (PPFD) (coefficient of variation (CV)) of the 91 measurement points in the irradiated area (x = ±30 cm and y = ±15 cm at z = 17.3 cm) was 438 μmol m–2 s–1 (9.6%) when the IFss were supplied to all LEDs

Read more

Summary

Introduction

Plant growth and development depend on the availability of light. Lighting systems play crucial roles in plant studies. Light-emitting diodes (LEDs) offer many benefits for applications in plant studies and potentially in commercial cultivation Their solidity and longevity enable easier installation and manipulation compared to conventional lighting devices such as incandescent and fluorescent lamps, which have fragile glass sheaths [1,2,3]. Their mechanical reliability irradiation [8] is possible using visible-spectrum LEDs that do not emit collateral infrared radiation, which would result in potentially undesirable increase in plant temperature. Optimum spectrum lighting is desirable for efficient energy usage of plant lighting [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call