Abstract

In contrast to fluorescent lamps and high-power sodium lamps, the use of light-emitting diode (LED) lamps enables the control of not only photosynthetic photon flux density (PPFD) at the plant level, but also the relative spectral photon flux density distribution (RSPD) of light because of the variety, even at different times of day, of producible light emitted by LEDs of different types. Effects of the spectral photon flux density on plant growth and morphology have been investigated using several types of LEDs and plant species. However, few studies on lighting methods with time-varying PPFD or RSPD have been published to date. In this paper, we summarize the effects of time-varying PPFD on the net photosynthetic rate (Pn) and those of time-varying RSPD on plant growth and morphology. Detailed modeling studies have been conducted on the reactions of the photosynthetic pathway under time-varying PPFD at a cycle of milliseconds to seconds. The results of these modeling studies and actual measurements of Pn under pulsed light clearly indicate that pulsed light is not advantageous to improve Pn. Although the integrated PPFD of blue and red light was unchanged, the growth of leaf lettuce was promoted by asynchronous irradiation with blue light and red light compared with growth under simultaneous irradiation. We think that blue-light monochromatic irradiation promotes leaf elongation through leaf expansion as a primary factor in the enhancement of plant growth. In addition, changes in leaf photosynthetic capacity caused by blue-light monochromatic irradiation may be involved in plant growth promotion. An increasing number of studies have investigated the effects of time-varying RSPD on plants. However, the mechanisms underlying these effects remain to be elucidated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call