Abstract

Wetland or hydric soils, in addition to excess water and limited air-filled porosity, are characterized by anaerobic or reducing conditions. Wetland plants have developed physiological and morphological adaptations for growing under these conditions. Various methods exist for measuring plant responses to reducing conditions in wetland and aquatic environments, including assessment of radial oxygen transport, cellular enzymatic transformations, changes in root structure, and nutrient uptake. However, a gap exists in quantifying the chemical properties and reducing nature of soil environment in which plant roots are grown. The variation in reducing conditions, oxygen demand, and other associated processes that occur in wetland soils makes it difficult to truly compare the plant responses reported in the literature. This review emphasizes soil-plant interactions in wetlands, drawing attention to the importance of quantifying the intensity and capacity of reduction and/or oxygen demand in wetland soils to allow proper evaluation of wetland plant responses to such conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.