Abstract

Plant community assembly is determined by species turnover and intraspecific trait variations (ITV) controlled by environment changes. However, little is known about how species turnover and ITV affect the responses of plant community to habitat changes and grazing disturbance in semiarid grasslands. Here, we measured five functional plant traits in four typical grassland habitats under fencing and grazing disturbance in a semiarid grassland, Northern China, including plant height, specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf carbon: nitrogen ratio (C:N). We also calculated the community weighted means (CWM) and non-weighted means (CM) of all traits and examined the relative roles of species turnover and ITV in affecting the responses of community traits to habitat changes and grazing disturbance. Our results showed that the CWM and CM values of five functional traits differed with grassland habitat changes. As compared to other grasslands, the Stipa steppe had the higher plant height, the sandy grassland had the higher SLA and lower LDMC, and the meadow had the lower LNC and higher C:N. Grazing decreased plant height across grassland habitats, as well as decreased SLA and increased LDMC in meadow. The responses of all community-level traits to habitat changes were driven by species turnover, while the responses of phenotypic traits (height, SLA and LDMC) to grazing were determined by both species turnover and ITV. So, we argue that ITV should be considered when understanding plant community assembly under grazing disturbance regime in semiarid grasslands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.