Abstract
Background: The extent to which nutrient availability influences plant community composition and dynamics has been a focus of ecological enquiry for decades.Aims: Results from a long-term nitrogen (N) and phosphorus (P) addition experiment in alpine tundra were used to evaluate the importance of the two nutrients in structuring plant communities in three communities that differed in their snow cover amounts and duration and soil moisture characteristics.Methods: A factorial N and P experiment was established in three meadows differing in initial vegetation composition and soil moisture. Plant and soil characteristics were measured after 20 years, and the dissimilarity among meadows and treatments were measured using permutational analysis of variance.Results: Plant species richness declined uniformly across the three meadow types and in response to N and N + P additions, while both evenness and the Shannon diversity index finding indicated that nutrient additions had the highest impact on moister habitats. Overall, N impacts overshadowed changes attributed to P additions, and the N and N + P plots in wet meadow sites were the least diverse and scored the lowest dissimilarity averages among treatments. Dissimilarity estimates indicated that the control and P plots in the dry meadow community were more distinct in composition than all other plots, and especially those in the moist or wet meadows. Above-ground biomass of grasses and sedges (graminoids) increased with N additions while forbs appeared to show responses dictated in part by the graminoid responses. The most abundant grass species of moist and wet meadow, Deschampsia cespitosa, dominated N and N + P plots of the wet sites, but did not show a N response in moist areas in spite of its general abundance in moist meadow. Competition from other plant species in the moist areas likely diminished the D. cespitosa response and contributed to the resilience of the community to nutrient enrichment.Conclusions: Initial community composition, as influenced by the specific moisture regime, appears to control the extent to which changes in nutrient resources can alter plant community structure. Long-term fertilization tends to support most but not all findings obtained from shorter-termed efforts, and wet meadows exhibit the largest changes in plant species numbers and composition when chronically enriched with N.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have